References
[B] A. Beilinson. The derived category of coherent sheaves on . Selected translations. Selecta Math. Soviet. 3 (1983/84), no. 3, 233-237.
[Bo1] A. Bondal. Helices, representations of quivers and Koszul algebras. Helices and vector bundles, 75-95, London Math. Soc. Lecture Note Ser., 148, Cambridge Univ. Press, Cambridge, 1990.
[Bo2] A. Bondal. Representations of associative algebras and coherent sheaves. Math. USSR-Izv. 34 (1990), no. 1, 23-42.
[Bo3] A. Bondal. Derived categories of toric varieties. Obervolfach reports, 3 (1), 284-286, 2006.
[BH] L. Borisov, Z. Hua. On the conjecture of King for smooth toric Deligne-Mumford stacks. Adv. Math. 221 (2009), no. 1, 277-301.
[BT] A. Bernardi, S. Tirabassi. Derived categories of toric Fano 3-folds via the Frobenius morphism. Matematiche (Catania) 64 (2009), no. 2, 117-154.
[CMR1] L. Costa, R. M.Miro-Roig. Tilting sheaves on toric varieties. Math Z., 248 (2004), 849-865.
[CMR2] L. Costa, R. M. Miro-Roig. Derived categories of projective bundles. Proc. Amer. Math. Soc. 133 (2005), no. 9, 2533-2537.
[CMR3] L. Costa, R. M. Miro-Roig. Frobenius splitting and derived category of toric varieties. Illinois J. Math. 54 (2010), no. 2, 649-669.
[CMR4] L. Costa, R. M. Miro-Roig. Derived category of toric varieties with small Picard number. Cent. Eur. J. Math. 10 (2012), no. 4, 1280—1291.
[CDRMR] L. Costa, S. Di Rocco, R. M. Miró-Roig. Derived category of fibrations. Math. Res. Lett. 18 (2011), no. 3, 425-432.
[E] A. Efimov. Maximal lengths of exceptional collections of line bundles. J. London Math. Soc., 90:2 (2014), 350—372.
[HP] L. Hille, M. Perling. A counterexample to King's conjecture. Compos. Math. 142 (2006), no. 6, 1507-1521.
[Ka] Y. Kawamata. Derived categories of toric varieties. Michigan Math. J. 54 (2006), no. 3, 517-535.
[K] A. King. Tilting bundles on some rational surfaces. preprint.
[O] D. O. Orlov. Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. RAN. Ser. Mat., 1992, Volume 56, Issue 4, 852—862.
[LM] M. Lason, M. Michalek. On the full, strongly exceptional collections on toric varieties with Picard number three. Collect. Math. 62 (2011), no. 3, 275-296.
[P] M. Perling. Some Quivers Describing the Derived Category of the Toric del Pezzos. Preprint 2003.